MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A.

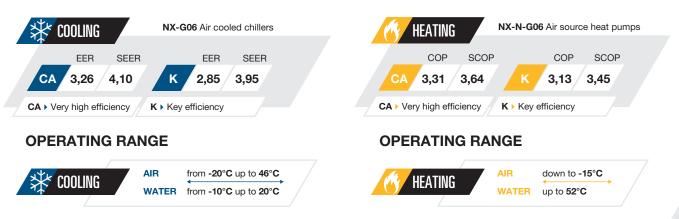
THE ECO-FRIENDLY SOLUTION FOR YOUR PERFECT COMFORT

Air source chillers and heat pumps with scroll compressors and low GWP refrigerant. From 49,6 to 218 kW

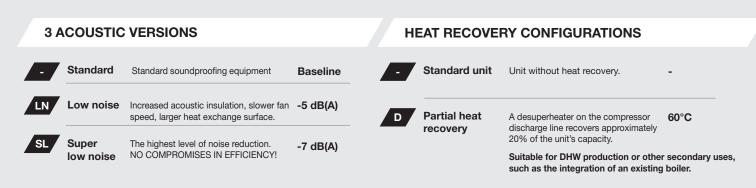
NX-G06 and NX-N-G06 are air source chiller and heat pump ranges with scroll compressors designed for delivering the best efficiencies in comfort applications.

Reduced refrigerant charge and low GWP refrigerant ensure the lowest CO, eq tons, for an environmentalfriendly approach.

Available in three different acoustical versions, NX-G06 and NX-N-G06 feature extremely low sound emissions, with zero compromises in efficiency.


The new ranges are brilliantly engineered to integrate all the main hydraulic and mechanic components inside the unit, providing installers the ideal plug & play solution for the HVAC plant.

COMFORT **APPLICATIONS**


Hotels

- Shopping centres
- Office buildings
- Museums
- Education centres
- Sport facilities
- Banks
- Institutions

PREMIUM EFFICIENCIES IN HEATING AND COOLING

Average values (EN14511) / SEER: Regulation (EU) N. 2016/2281 / SCOP: Regulation (EU) N. 813/2013

NEW GENERATION GREEN REFRIGERANT

Fully committed to support the creation of a greener tomorrow, Mitsubishi Electric Hydronics & IT Cooling Systems presents the G06 series, chillers and heat pumps with reduced environmental impact.

Thanks to the new generation refrigerant R454B, the environmental impact of NX-G06 and NX-N-G06 is greatly reduced. Combining reduced refrigerant charge with a low GWP refrigerant, these units boast the lowest amount of CO_2 eq in the scroll unit market, thus resulting as the perfect choice for any new forward looking installation.

-76% vs R410A **R454B REFRIGERANT GWP: 466** -31% vs R32 High density, low GWP refrigerant. Its physical properties are similar to R410A, so the same type of equipment / components can be used. **GWP** ▶ Low GWP, only 466 REDUCED Reduced refrigerant **ENVIRONMENTAL** charge (-10% vs R410A) IMPACT Use of well-known components RELIABILITY Refrigerant circuit R452B reliability is maintained Same operating limits of R410A PERFORMANCE both in cooling and heating & ENVELOPE ▶ Higher efficiency (full load +3,5%, seasonal +2% vs R410A)

W3000+ CONTROL SOFTWARE

Fast adaptive responses and functional options, developed fully in-house. For the customer's complete peace of mind.

NIGHT MODE

The advanced control system is engineered to maintain optimal comfort conditions according to occupancy needs and variations.

Thanks to the night mode function, the unit lowers its sound emissions (-3 dB(A) with factory settings) leveraging on a reduced usage of its resources. Offering excellent comfort during low load periods.

Thanks to the extensive know-how in heat pump technology, a series of smart proprietary auto adaptive algorithms have been developed to manage the defrosting cycles in the smartest way.

- Reduction in defrosting time
- Minimum impact on leaving water temperature
- Reduction of energy required for defrosting
- ▶ Increase of COP

compared to units with traditional defrost cycles.

PACKAGED SOLUTION

NX-G06 and NX-N-G06 are all-in-one solutions, ready to be installed. The integrated hydronic modules includes the pumps, the buffer tanks and the main hydraulic components, allowing simplified installation and time-saving commissioning.

SILENT OPERATION AND NO COMPROMISES IN EFFICIENCY

NX-G06 and NX-N-G06 ranges have been designed for the perfect environmental well-being. Thanks to a specific design, the SL versions (super low noise) achieve the minimum sound level while maintaining the same performance as the standard acoustical version. 02/03

R454B

AIR SOURCE CHILLERS AND HEAT PUMPS

TECHNOLOGICAL CHOICES

W3000+ CONTROL

Management software developed fully in-house

- Proprietary settings for faster adaptive responses to different dynamics
- Enhanced diagnostics thanks to the black box function
- Connectivity with the most commonly used BMS protocols and M-Net Mitsubishi Electric proprietary protocol (Opt.)

Compact keyboard

CLIMAVENETA

HI ELECTRIC CS & IT COOLING

- Large LCD display and functional keys
- Quick and easy parameter consultation and adjustment by means of a multi-level menu
- KIPlink, the innovative Wi-Fi interface, is available as an option.

Plate heat exchanger

Compact and robust, made of AISI 316 steel plates, copper-brazed.

- Low pressure drops
- Fully protected against ice formation
- Closed-cell neoprene external lining

Scroll compressors

New generation scroll compressors, developed for the use of high density A2L refrigerants (Fluid Group 1 of PED Directive).

- Tandem or trio configuration to benefit from higher seasonal efficiency
- Specific oil management solution for enhanced reliability

R454B Refrigerant

High density, low GWP refrigerant

- Composition:
 69% R32 + 31% R1234yf
- Global Warming Potential: 466 (IPCC AR5)
- Safety classification:

GWP: 466

- A2L midly flammable (ISO 817)

-76% vs R410A

-31% vs R32

- Fluid Group 1 (PED)

Maximum quality of every single component, attention to detail, dedicated components for the R454B refrigerant: these are the fundamentals that make the NX-G06 and NX-N-G06 ranges the ideal solutions for forward-looking cooling systems.

FANS

High performing, axial fans:

- Different sizes and speeds to perfectly fit the requirements of each unit model
- Speed control (DVV) based on refrigerant pressure.

UP TO + 8% MORE SEASONAL EFFICIENCY

EC fans (opt. for CA versions)

- Continuous regulation of the air flow
- Reduced power consumption and increased efficiencies at partial loads

Highly resistent finned coils

New generation full aluminum micro-channel coils for cooling only chillers

- Long Life Alloy (LLA) for higher corrosion resistance and longer life cycle
- Up to 30% of refrigerant charge reduction vs. traditional solutions

Copper and aluminum tube & fins coils for reversible heat pumps

- Ideally designed to optimize airflow and heat transfer
- Protective coating available for harsh industrial and marine environments (Opt.)

HYDRONIC MODULES

The **fully integrated hydronic module** (opt.) includes the pumps, the buffer tank, and all the main hydraulic components, for the best **optimization of the installation space, time and costs**.

Pumps

- End-suction configuration
- 2-pole motor
- Single or twin pumps
- Low or high head (approx. 100 or 200 kPa).

Pumps + Buffer tank

- Up to 500 liter I buffer tank
- 20mm insulation lining
- Including: expansion vessel, safety valve, manometer.

Only terminals

- On/off control
- 1 or 2 external pumps

ACCESSORIES AND FURTHER OPTIONS

KIPlink user interface

An exclusive product of Mitsubishi Electric Hydronics & IT Cooling Systems.

Based on Wi-Fi technology, KIPlink is an option that allows one to operate on the unit directly from a mobile device (smartphone, tablet, or notebook) by simply scanning the QR code positioned on the unit.

MAIN FEATURES

Easier on-site operation

Monitor each component while moving around the unit for maintenance operations. View and change all parameters with easyto-understand screenshots and dedicated tooltips.

Get devoted "help" messages / for alarm reset and trouble shooting.

Real-time graphs and trends

Monitor the immediate labor status of the compressors, heat exchangers, cooling circuits, and pumps. View the real-time graphs of the key operating variable trends.

	A			
		TONE LOS		
	Photo set a designer.	94%(-	-	
	2 🚰 Trainater	(MIT *		
	2 Contract place as desired on the	a lane		
D)	2 Contraction	(merr	-	
		-	-	
)	(
	2 🔤 saturating beau saturatin			
	2 Contracting to an address for an			
) 📷 transition	(dates		
) 📷 termingke station) he ass	a (1997)		
	2 The set of a set of	(and		
	2 Martinette	Case		

Data logger function

View history of events and use the filter for a simple search.

Enhance diagnostics with data and graphs of 10 minutes before and after each alarm. Download all the data for detailed analysis.

FURTHER OPTIONS

Set-point adjustment	 4-20 mA: Enables remote set-point adjustments (analog input). Double set-point: Enables the remote switch between 2 set-points (digital input). Set-point compensation: Automatic adjustment of the set-point on the basis of the outdoor temperature.
Control functions	Night mode: Limits the unit sound level reducing the usage of the resources. Sound power reduction (with factory settings): -3 dB(A). U.L.C. User Limit Control: Controls a mixing valve (not included) to ensure a safe start-up and operation of the unit even in critical conditions. Remote probe: Controls the unit's and pump's activation on the base of the water temperature of the buffer tank or hydraulic decoupler. Demand limit: Limits the unit's power absorption for safety reasons or in temporary situations (digital input).
Electrical	Compressor rephasing: The capacitors on the compressors' line increase the unit's power factor. Soft-starter: Manages the inrush current enabling lower motor windings' mechanical wear, avoidance of mains voltage fluctuations during starting and favorable sizing for the electrical system.
Connectivity	Serial card interface module to allow integration with BMS protocols: Modbus / LonWorks / BACnet MS/TP / BACnet over IP / Konnex / Modbus TCP/IP/ SNMP M-Net interface kit: Interface module to allow the integration of the unit with Mitsubishi Electric proprietary communication protocol M-Net.
Energy Meter	Energy meter for BMS: Acquires electrical data and the power absorbed by the unit and sends them the BMS for energy metering (Modbus RS485). Energy meter for W3000: The electrical data acquired is available directely on the unit's control.

COILS AND COATINGS

circuit **Dual pressure relief valves with switch:** One valve is isolated from the refrigerant circuit while the other is in service. The userr can work on the isolated valve for periodic maintenance or replacement, without removing the refrigerant from the circuit. Refrigerant Leak detector: Factory installed device. In case of a gas leak detection it raises an alarm. leak detector Leak detector + compressor off: Factory installed device. In case of a gas leak detection it raises an alarm and stops the units. Water flow switch: Designed to protect the unit when the water flow across the evaporator is not sufficient and falls outside of the operating parameters **Hydraulic** Water filter: Filters the water before the unit's inlet. Anti-intrusion grilles: Perimeter metal grilles to protect against the intrusion of solid bodies into the unit structure. **Structure** Spring or rubber type anti-vibration mountings: Reduce vibrations, keeping noise transmission to a minimum. Packing Container slides or packing: The unit is provided with metal slides to load it in a conrtainer, with or without a protective nylon layer. Wooden cage packing: The unit is provided with a robust wooden cage, with or without a protective nylon layer.

Oven bake

UV topcoat

CHILLERS

NX-G06

Chiller, air cooled for outdoor installation, from 49,6 to 218 kW.

NX-G06/CA			0202P	0252P	0262P	0302P	0352P	0402P
Power supply		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3/50	400/3/50	400/3/50
PERFORMANCE								
COOLING ONLY (GROSS VALUE)								
Cooling capacity	(1)	kW	52,80	59,95	66,81	81,64	92,73	103,6
Total power input	(1)	kW	15,59	17,95	20,27	24,80	28,22	31,39
EER	(1)	kW/kW	3,385	3,352	3,291	3,290	3,287	3,299
ESEER	(1)	kW/kW						
COOLING ONLY (EN14511 VALUE	5)							
Cooling capacity	(1)(2)	kW	52,70	59,80	66,70	81,40	92,40	103,3
EER	(1)(2)	kW/kW	3,330	3,290	3,240	3,240	3,200	3,230
ENERGY EFFICIENCY								
SEASONAL EFFICIENCY IN COOI	LING (Reg. E	U 2016/2281)						
Ambient refrigeration								
Prated,c	(7)	kW	52,7	59,8	66,7	81,4	92,4	103
SEER	(7)(8)		4,05	4,12	4,16	3,97	3,95	4,02
Performance ηs	(7)(9)	%	159	162	163	156	155	158
EXCHANGERS								
HEAT EXCHANGER USER SIDE IN	N REFRIGER	ATION						
Water flow	(1)	l/s	2,525	2,867	3,195	3,904	4,435	4,956
Pressure drop	(1)	kPa	37,5	34,6	35,1	37,5	59,4	51,6
REFRIGERANT CIRCUIT								
Compressors nr.		N°	2	2	2	2	2	2
No. Circuits		N°	1	1	1	1	1	1
Refrigerant charge		kg	7,30	7,90	8,00	9,30	12,4	12,5
NOISE LEVEL								
Sound Pressure	(3)	dB(A)	53	53	54	56	56	58
Sound power level in cooling	(4)(5)	dB(A)	85	85	86	88	88	90
SIZE AND WEIGHT								
A	(6)	mm	2395	2395	2395	2825	3360	3360
В	(6)	mm	1195	1195	1195	1195	1195	1195
Н	(6)	mm	1865	1865	1865	1980	1980	1980

			04500	05000	05000	00405	07400	00405
NX-G06/CA			0452P	0502P	0562P	0612P	0712P	0812P
Power supply	V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	
PERFORMANCE								
COOLING ONLY (GROSS VALUE)								
Cooling capacity	(1)	kW	117,0	132,3	153,9	171,3	193,2	218,0
Total power input	(1)	kW	35,66	39,89	45,80	51,88	59,31	65,98
EER	(1)	kW/kW	3,277	3,316	3,360	3,301	3,258	3,303
ESEER	(1)	kW/kW						
COOLING ONLY (EN14511 VALUE	,							
Cooling capacity	(1)(2)	kW	116,8	132,0	153,6	171,0	192,8	217,6
EER	(1)(2)	kW/kW	3,210	3,250	3,290	3,240	3,200	3,240
ENERGY EFFICIENCY								
SEASONAL EFFICIENCY IN COOL	.ING (Reg. E	U 2016/2281)						
Ambient refrigeration								
Prated,c	(7)	kW	117	132	154	171	193	218
SEER	(7)(8)		4,12	3,99	3,99	4,03	4,12	3,94
Performance ηs	(7)(9)	%	162	157	157	158	162	155
EXCHANGERS								
HEAT EXCHANGER USER SIDE IN								
Water flow	(1)	l/s	5,597	6,326	7,361	8,191	9,237	10,43
Pressure drop	(1)	kPa	53,6	52,9	59,3	52,7	51,8	65,9
REFRIGERANT CIRCUIT								
Compressors nr.		N°	2	2	2	2	2	2
No. Circuits		N°	1	1	1	1	1	1
Refrigerant charge		kg	12,9	17,5	19,8	20,3	20,8	23,0
NOISE LEVEL	(2)	15(4)	50	50	50	50		
Sound Pressure	(3)	dB(A)	58	58	59	59	60	61
Sound power level in cooling	(4)(5)	dB(A)	90	90	91	91	92	93
SIZE AND WEIGHT	(0)		0000	0000	0100	0100	0100	1005
A	(6)	mm	3360	3980	3160	3160	3160	4335
В	(6)	mm	1195	1195	2250	2250	2250	2250
H Operating weight	(6)	mm	1980	1980	2170	2170	2170	2170
Operating weight	(6)	kg	1000	1080	1510	1550	1570	1810

Notes:

08/09

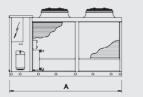
1 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Source (side) heat exchanger air (in) 35°C.

35°C.
2 Values in compliance with EN14511
3 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level.
4 Sound power on the basis of measurements made in compliance with ISO 9614.
5 Sound power level in cooling, outdoors.

6 Unit in standard configuration/execution, without optional accessories. 7 Parameter calculated according to [REGULATION (EU) N. 2016/2281] 8 Seasonal energy efficiency ratio 9 Seasonal space cooling energy efficiency

The units highlighted in this publication contain R454B [GWP₁₀₀ 466] fluorinated greenhouse gases. Certified data in EUROVENT

7


/

R454B

NX-G06/SL-CA			0202P	0252P	0262P	0302P	0352P	0402P
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE								
COOLING ONLY (GROSS VALUE)								
Cooling capacity	(1)	kW	53,11	59,72	66,44	78,67	90,71	101,8
Total power input	(1)	kW	15,93	17,65	19,87	23,73	27,54	30,10
EER	(1)	kW/kW	3,340	3,373	3,337	3,321	3,298	3,382
ESEER	(1)	kW/kW						
COOLING ONLY (EN14511 VALUE	E)							
Cooling capacity	(1)(2)	kW	53,00	59,60	66,30	78,50	90,40	101,5
EER	(1)(2)	kW/kW	3,280	3,330	3,290	3,260	3,220	3,310
ENERGY EFFICIENCY								
SEASONAL EFFICIENCY IN COO	LING (Reg. E	U 2016/2281)						
Ambient refrigeration	()							
Prated,c	(7)	kW	53,0	59,6	66,3	78,5	90,4	102
SEER	(7)(8)		3,99	3,99	4,05	4,20	4,06	4,16
Performance ηs	(7)(9)	%	157	157	159	165	159	163
EXCHANGERS								
HEAT EXCHANGER USER SIDE I								
Water flow	(1)	l/s	2,540	2,856	3,177	3,762	4,338	4,867
Pressure drop	(1)	kPa	38,0	34,4	34,7	34,9	56,8	49,7
REFRIGERANT CIRCUIT			-	-	-	-		
Compressors nr.		N°	2	2	2	2	2	2
No. Circuits		N°	1	1	1	1	1	1
Refrigerant charge		kg	7,70	9,00	9,70	9,80	11,7	14,2
NOISE LEVEL								
Sound Pressure	(3)	dB(A)	46	47	47	47	48	49
Sound power level in cooling	(4)(5)	dB(A)	78	79	79	79	80	81
SIZE AND WEIGHT								
Α	(6)	mm	2825	3360	3360	3360	3980	3160
B	(6)	mm	1195	1195	1195	1195	1195	2250
H	(6)	mm	1980	1980	1980	1980	1980	2170
Operating weight	(6)	kg	670	760	770	780	940	1410

NX-G06/SL-CA			0452P	0502P	0562P	0612P	0712P	0812P
NX-G00/SE-CA								0012P
Power supply	V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	
PERFORMANCE								
COOLING ONLY (GROSS VALUE)								
Cooling capacity	(1)	kW	113,9	127,7	145,6	165,4	187,1	208,9
Total power input	(1)	kW	34,29	38,87	43,94	49,10	57,20	63,36
EER	(1)	kW/kW	3,321	3,283	3,317	3,369	3,271	3,295
ESEER	(1)	kW/kW						
COOLING ONLY (EN14511 VALUE)								
Cooling capacity	(1)(2)	kW	113,5	127,4	145,3	165,1	186,7	208,5
EER	(1)(2)	kW/kW	3,250	3,220	3,250	3,310	3,220	3,230
ENERGY EFFICIENCY								
SEASONAL EFFICIENCY IN COOL	ING (Reg. E	EU 2016/2281)						
Ambient refrigeration								
Prated,c	(7)	kW	114	127	145	165	187	208
SEER	(7)(8)		4,22	4,25	4,30	4,30	4,41	4,21
Performance ηs	(7)(9)	%	166	167	169	169	173	165
EXCHANGERS								
HEAT EXCHANGER USER SIDE IN	REFRIGEF	RATION						
Water flow	(1)	l/s	5,447	6,106	6,962	7,911	8,945	9,989
Pressure drop	(1)	kPa	50,8	49,3	53,1	49,1	48,5	60,5
REFRIGERANT CIRCUIT								
Compressors nr.		N°	2	2	2	2	2	2
No. Circuits		N°	1	1	1	1	1	1
Refrigerant charge		kg	14,9	17,4	21,6	23,5	23,6	27,0
NOISE LEVEL								
Sound Pressure	(3)	dB(A)	50	50	51	52	53	54
Sound power level in cooling	(4)(5)	dB(A)	82	82	83	84	85	86
SIZE AND WEIGHT								
A	(6)	mm	3160	3160	4335	4335	4335	5510
В	(6)	mm	2250	2250	2250	2250	2250	2250
Н	(6)	mm	2170	2170	2170	2170	2170	2170
Operating weight	(6)	kg	1450	1480	1740	1820	1850	2130

NX-N-G06

Heat pump, air source for outdoor installation, from 49,6 to 218 kW

NX-N-G06/CA			0202P	0252P	0262P	0302P	0352P	0402P
Power supply		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3/50	400/3/50	400/3/50
PERFORMANCE								
COOLING ONLY (GROSS VALUE)								
Cooling capacity	(1)	kW	49,19	57,23	64,17	77,67	88,29	98,07
Total power input	(1)	kW	16,76	18,54	20,90	25,29	28,80	32,07
EER	(1)	kW/kW	2,929	3,092	3,072	3,071	3,066	3,056
ESEER	(1)	kW/kW						
COOLING ONLY (EN14511 VALUE)								
Cooling capacity	(1)(2)	kW	49,10	57,10	64,00	77,50	88,00	97,80
EER	(1)(2)	kW/kW	2,890	3,040	3,030	3,030	3,000	3,000
HEATING ONLY (GROSS VALUE)								
Total heating capacity	(3)	kW	56,66	66,73	71,55	83,30	96,89	106,0
Total power input	(3)	kW	16,84	19,88	21,32	24,83	28,16	31,50
COP	(3)	kW/kW	3,375	3,352	3,362	3,359	3,436	3,365
HEATING ONLY (EN14511 VALUE)								
Total heating capacity	(3)(2)	kW	56,80	66,90	71,70	83,50	97,20	106,3
COP	(3)(2)	kW/kW	3,330	3,310	3,320	3,320	3,360	3,310
ENERGY EFFICIENCY								
SEASONAL EFFICIENCY IN HEATI								
PDesign	(4)	kW	41,9	49,1	53,1	62,0	71,3	77,3
SCOP	(4)(13)		4,01	3,85	3,84	3,61	3,63	3,62
Performance ηs	(4)(14)	%	157	151	151	142	142	142
Seasonal efficiency class	(15)		A++	A++	A++	A+	-	-
EXCHANGERS								
HEAT EXCHANGER USER SIDE IN								
Water flow	(1)	l/s	2,352	2,737	3,069	3,714	4,222	4,690
Pressure drop	(1)	kPa	32,6	31,5	32,3	34,0	53,8	46,2
HEAT EXCHANGER USER SIDE IN								
Water flow	(3)	l/s	2,735	3,221	3,454	4,021	4,677	5,115
Pressure drop	(3)	kPa	44,0	43,7	41,0	39,8	66,0	54,9
REFRIGERANT CIRCUIT								
Compressors nr.		N°	2	2	2	2	2	2
No. Circuits		N°	1	1	1	1	1	1
Refrigerant charge		kg	13,5	14,9	15,2	18,0	24,8	28,2
NOISE LEVEL		15(4)				=0	=0	
Sound Pressure	(5)	dB(A)	66	67	67	70	70	71
Sound power level in cooling	(6)(7)	dB(A)	84	85	85	88	88	89
Sound power level in heating	(6)(8)	dB(A)	84	85	85	88	88	89
SIZE AND WEIGHT	(-)		0005	0005	0005	0005		0000
A	(9)	mm	2395	2395	2395	2825	3360	3360
B	(9)	mm	1195	1195	1195	1195	1195	1195
H	(9)	mm	1865	1865	1865	1980	1980	1980
Operating weight	(9)	kg	670	700	700	830	940	990

Notes:

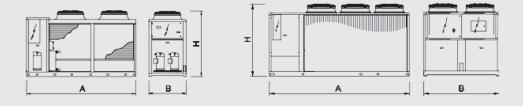
- Notes:
 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Source (side) heat exchanger air (in) 35°C.
 Values in compliance with EN14511
 Plant (side) heat exchanger water (in/out) 40°C/45°C; Source (side) heat exchanger air (in) 7°C 87% R.H.
 Parameter calculated for LOW-TEMPERATURE application in AVERAGE climate conditions according to [REGULATION (EU) N. 813/2013]
- 5 Average sound pressure level at 1m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level.
- 6 Sound power on the basis of measurements made in compliance with ISO 9614.

- 7 Sound power level in cooling, outdoors.8 Sound power level in heating, outdoors.9 Unit in standard configuration/execution, without optional accessories.

10 Parameter calculated according to [REGULATION (EU) N. 2016/2281]

- 10 Parameter Calculated according to [HEGULATION (EU) N. 2016/2281] 11 Seasonal energy efficiency ratio 12 Seasonal space cooling energy efficiency 13 Seasonal coefficient of performance 14 Seasonal space heating energy efficiency 15 Energy efficiency class referred to LOW-TEMPERATURE application in AVERAGE climate conditions according to [REGULATION (EU) N. 811/2013]

The units highlighted in this publication contain R454B [GWP $_{\rm 100}$ 466] fluorinated greenhouse gases.


Certified data in EUROVENT

© R454B

HEATING COOLING SCROLL

NX-N-G06/CA			0452P	0502P	0562P	0612P	0712P	0812P
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE								
COOLING ONLY (GROSS VALUE)								
Cooling capacity	(1)	kW	111,6	125,7	146,4	162,9	189,8	210,7
Total power input	(1)	kW	36,45	40,71	48,05	52,84	62,38	67,71
EER	(1)	kW/kW	3,058	3,088	3,044	3,085	3,042	3,112
ESEER	(1)	kW/kW						
COOLING ONLY (EN14511 VALUE)							
Cooling capacity	(1)(2)	kW	111,2	125,3	146,1	162,6	189,4	210,3
EER	(1)(2)	kW/kW	3,000	3,030	2,990	3,030	2,990	3,060
HEATING ONLY (GROSS VALUE)			,	,	,	,	,	,
Total heating capacity	(3)	kW	117,3	132,6	154,9	173,4	200,9	222,9
Total power input	(3)	kW	34,96	39,46	46,27	51,75	60,06	66,34
COP	(3)	kW/kW	3,351	3,357	3,346	3,354	3,343	3,362
HEATING ONLY (EN14511 VALUE)	()		-,	-,	-,	-,	-,	-,
Total heating capacity	(3)(2)	kW	117,6	133,0	155.3	173,7	201,2	223.4
COP	(3)(2)	kW/kW	3.290	3,300	3,290	3,300	3.290	3,300
ENERGY EFFICIENCY	(0)(=)		0,200	0,000	0,200	0,000	0,200	0,000
SEASONAL EFFICIENCY IN HEAT	ING (Reg. E	U 813/2013)						
PDesign	(4)	kW	88,1	99.1	109	128	147	170
SCOP	(4)(13)		3,71	3,60	3,47	3,59	3,42	3,38
Performance ηs	(4)(14)	%	145	141	136	140	134	132
Seasonal efficiency class	(15)	,,,	-	-	-	-	-	-
EXCHANGERS	(10)							
HEAT EXCHANGER USER SIDE IN		ATION						
Water flow	(1)	l/s	5,336	6,009	7,003	7,792	9,075	10,08
Pressure drop	(1)	kPa	48,7	47,7	53,7	47,7	50,0	61,6
HEAT EXCHANGER USER SIDE IN	. ,		.0,1	,.	00,1	,.	00,0	01,0
Water flow	(3)	l/s	5.662	6,403	7,479	8,370	9,696	10.76
Pressure drop	(3)	kPa	54,8	54,2	61,3	55,0	57,0	70,2
REFRIGERANT CIRCUIT	(0)	u	0.,0	0.,2	0.,0	00,0	0.,0	,_
Compressors nr.		N°	2	2	2	2	2	2
No. Circuits		N°	1	1	1	1	1	1
Refrigerant charge		kg	30,2	34,7	41,7	48,7	54,3	63,8
NOISE LEVEL		1.9	00,2	01,7	,,	10,1	01,0	00,0
Sound Pressure	(5)	dB(A)	71	71	71	71	72	73
Sound power level in cooling	(6)(7)	dB(A)	89	90	91	91	92	93
Sound power level in heating	(6)(8)	dB(A)	89	90	91	91	92	93
SIZE AND WEIGHT	(0)(0)	UD(A)	03	30	51	51	52	30
A	(9)	mm	3360	3980	4110	4110	5110	5110
В	(9)	mm	1195	1195	2220	2220	2220	2220
Н	(9)	mm	1980	1980	2150	2150	2150	2150
	. ,		1090	1980	1740	2150 1840	2070	2150
Operating weight	(9)	kg	1090	1270	1740	1640	2070	2200

NX-N-G06

Heat pump, air source for outdoor installation, from 49,6 to 218 kW

NX-N-G06/LN-CA			0202P	0252P	0262P	0302P	0352P	0402P
Power supply		V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3/50	400/3/50	400/3/50
PERFORMANCE								
COOLING ONLY (GROSS VALUE)								
Cooling capacity	(1)	kW	45,64	52,16	57,44	76,20	83,63	95,03
Total power input	(1)	kW	18,09	20,42	23,41	24,96	29,00	32,12
EER	(1)	kW/kW	2,519	2,559	2,453	3,048	2,883	2,960
ESEER	(1)	kW/kW						
COOLING ONLY (EN14511 VALUE)								
Cooling capacity	(1)(2)	kW	45,50	52,10	57,30	76,00	83,40	94,80
EER	(1)(2)	kW/kW	2,500	2,530	2,430	3,010	2,830	2,910
HEATING ONLY (GROSS VALUE)								
Total heating capacity	(3)	kW	56,66	66,73	71,55	83,30	96,89	106,0
Total power input	(3)	kW	16,84	19,88	21,32	24,83	28,16	31,50
COP	(3)	kW/kW	3,375	3,352	3,362	3,359	3,436	3,365
HEATING ONLY (EN14511 VALUE)								
Total heating capacity	(3)(2)	kW	56,80	66,90	71,70	83,50	97,20	106,3
COP	(3)(2)	kW/kW	3,330	3,310	3,320	3,320	3,360	3,310
ENERGY EFFICIENCY								
SEASONAL EFFICIENCY IN HEATI		,						
PDesign	(4)	kW	41,9	49,1	53,1	62,0	71,3	77,3
SCOP	(4)(13)		4,01	3,85	3,84	3,61	3,63	3,62
Performance ηs	(4)(14)	%	157	151	151	142	142	142
Seasonal efficiency class	(15)		A++	A++	A++	A+	-	-
EXCHANGERS								
HEAT EXCHANGER USER SIDE IN								
Water flow	(1)	l/s	2,183	2,494	2,747	3,644	3,999	4,545
Pressure drop	(1)	kPa	28,0	26,2	25,9	32,7	48,3	43,4
HEAT EXCHANGER USER SIDE IN								
Water flow	(3)	l/s	2,735	3,221	3,454	4,021	4,677	5,115
Pressure drop	(3)	kPa	44,0	43,7	41,0	39,8	66,0	54,9
REFRIGERANT CIRCUIT								
Compressors nr.		N°	2	2	2	2	2	2
No. Circuits		N°	1	1	1	1	1	1
Refrigerant charge		kg	13,5	14,9	15,2	18,0	24,8	28,2
NOISE LEVEL	(5)	15(4)	50				0.5	
Sound Pressure	(5)	dB(A)	59	60	61	64	65	66
Sound power level in cooling	(6)(7)	dB(A)	77	78	79	82	83	84
Sound power level in heating	(6)(8)	dB(A)	78	79	80	83	84	85
SIZE AND WEIGHT	(0)		0005	0005	0005	0005	0000	0000
A	(9)	mm	2395	2395	2395	2825	3360	3360
В	(9)	mm	1195	1195	1195	1195	1195	1195
H	(9)	mm	1865	1865	1865	1980	1980	1980
Operating weight	(9)	kg	680	740	750	870	950	1000

Notes:

12/13

Notes:
Plant (side) cooling exchanger water (in/out) 12°C/7°C; Source (side) heat exchanger air (in) 35°C.
Values in compliance with EN14511
Plant (side) heat exchanger water (in/out) 40°C/45°C; Source (side) heat exchanger air (in) 7°C - 87% R.H.
Parameter calculated for LOW-TEMPERATURE application in AVERAGE climate conditions according to [REGULATION (EU) N. 813/2013]

5 Average sound pressure level at 1m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level.

6 Sound power on the basis of measurements made in compliance with ISO 9614.

7 Sound power level in cooling, outdoors.8 Sound power level in heating, outdoors.9 Unit in standard configuration/execution, without optional accessories.

10 Parameter calculated according to [REGULATION (EU) N. 2016/2281]

10 Parameter Calculated according to [HEGULATION (EU) N. 2016/2281] 11 Seasonal energy efficiency ratio 12 Seasonal space cooling energy efficiency 13 Seasonal coefficient of performance 14 Seasonal space heating energy efficiency 15 Energy efficiency class referred to LOW-TEMPERATURE application in AVERAGE climate conditions according to [REGULATION (EU) N. 811/2013]

The units highlighted in this publication contain R454B [GWP $_{\rm 100}$ 466] fluorinated greenhouse gases.

Certified data in EUROVENT

HEATING COOLING SCROLL

r R454B

NX-N-G06/LN-CA			0452P	0502P	0562P	0612P	0712P	0812P
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE								
COOLING ONLY (GROSS VALUE)								
Cooling capacity	(1)	kW	105,5	119,9	138,5	158,7	181,4	203,9
Total power input	(1)	kW	36,88	40,62	46,63	51,90	59,49	65,30
EER	(1)	kW/kW	2,859	2,953	2,972	3,058	3,049	3,123
ESEER	(1)	kW/kW						
COOLING ONLY (EN14511 VALUE))							
Cooling capacity	(1)(2)	kW	105,2	119,5	138,2	158,4	181,0	203,6
EER	(1)(2)	kW/kW	2,810	2,900	2,920	3,010	3,000	3,070
HEATING ONLY (GROSS VALUE)								
Total heating capacity	(3)	kW	117,3	132,6	154,9	173,4	200,9	222,9
Total power input	(3)	kW	34,96	39,46	46,27	51,75	60,06	66,34
COP	(3)	kW/kW	3,351	3,357	3,346	3,354	3,343	3,362
HEATING ONLY (EN14511 VALUE)								
Total heating capacity	(3)(2)	kW	117,6	133,0	155,3	173,7	201,2	223,4
COP	(3)(2)	kW/kW	3,290	3,300	3,290	3,300	3,290	3,300
ENERGY EFFICIENCY								
SEASONAL EFFICIENCY IN HEAT	ING (Reg. E	J 813/2013)						
PDesign	(4)	kW	88,1	99,1	109	128	147	170
SCOP	(4)(13)		3,71	3,60	3,47	3,59	3,42	3,38
Performance ηs	(4)(14)	%	145	141	136	140	134	132
Seasonal efficiency class	(15)		-	-	-	-	-	-
EXCHANGERS								
HEAT EXCHANGER USER SIDE IN								
Water flow	(1)	l/s	5,046	5,732	6,624	7,590	8,673	9,751
Pressure drop	(1)	kPa	43,6	43,4	48,0	45,2	45,6	57,7
HEAT EXCHANGER USER SIDE IN								
Water flow	(3)	l/s	5,662	6,403	7,479	8,370	9,696	10,76
Pressure drop	(3)	kPa	54,8	54,2	61,3	55,0	57,0	70,2
REFRIGERANT CIRCUIT								
Compressors nr.		N°	2	2	2	2	2	2
No. Circuits		N°	1	1	1	1	1	1
Refrigerant charge		kg	30,2	34,7	41,7	48,7	54,3	63,8
NOISE LEVEL	(=)	15(4)		0.5	0.5	0.5		
Sound Pressure	(5)	dB(A)	66	65	65	65	66	67
Sound power level in cooling	(6)(7)	dB(A)	84	84	85	85	86	87
Sound power level in heating	(6)(8)	dB(A)	85	85	86	86	87	88
SIZE AND WEIGHT			0000	0000	4440	4440	5110	5440
A	(9)	mm	3360	3980	4110	4110	5110	5110
В	(9)	mm	1195	1195	2220	2220	2220	2220
H	(9)	mm	1980	1980	2150	2150	2150	2150
Operating weight	(9)	kg	1100	1280	1750	1850	2080	2210

"BY FAR THE BEST PROOF IS EXPERIENCE"

Sir Francis Bacon British Philosopher (1561 - 1626)

Every project is characterised by different needs and system specifications for various climates. All these projects share high energy efficiency, maximum integration, and total reliability resulting from the Climaveneta brand experience.

ESSELUNGA NOVARA NOVARA - ITALY

Period: 2017 Application: Supermarket Plant type: Hydronic System Cooling capacity: 541 kW Heating capacity: 601 kW Installed machines: 2x NX-N SL CA T 0904, 1x NX-N/CA 0202 P, 1x MANAGER 3000

CULTURAL CENTRE, LA PLATA BUENOS AIRES - ARGENTINA

Period: 2015 - 2016 Application: Museum Plant type: Hydronic System Cooling capacity: 546 kW Heating capacity: 602 kW Installed machines: 2x NX-N-K 1004T, 14x WIZARD

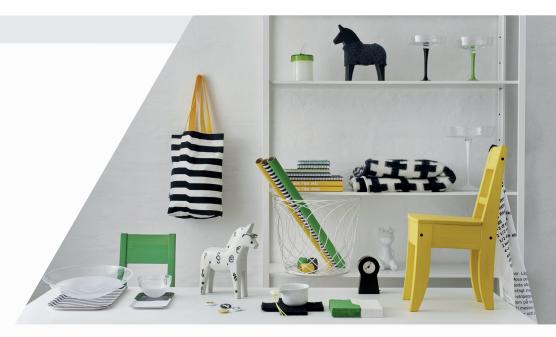
PENGUIN SYDNEY AQUARIUM SYDNEY - AUSTRALIA

Period: 2016 - 2018 Application: Museum Plant type: Hydronic System Cooling capacity: 420 kW Installed machines: 2x NX/K/S 1014P

IKEA MUSEUM

2016-18 Almhult - Sweden

Application: Retail - Museum


Plant type: Hydronic System

Cooling capacity: 880 kW

Installed machines: 1x NX/K 1214P, 2x NECS-FC/SL/S 0904

PROJECT

The Ikea Museum is a 7,000 sqm structure located in Almhult, Ikea's historical headquarters. It celebrates the 70-years history of the firm through its products and the stories of people who have bought its furniture over the years and is expected to become a tourist attraction. The four floors include fully furnished rooms, old catalogues, living spaces of the future and exhibits dedicated to the store's most popular and not-sopopular items.

CHALLENGE

The structure required a reliable and efficient HVAC system both in visitors areas and in technical rooms, in order to ensure a pleasant visiting experience, in line with the values celebrated by Ikea all over the world through a unique shopping experience.

SOLUTION

The M&E consultants opted for Climaveneta units for this prestigious project. A NX air source chiller with scroll compressors was installed for the air conditioning of the museum. The local temperate climate has made possible to equip the cooling system of the technical rooms with 2 NECS-FC chillers. Thanks to Climaveneta advanced free cooling technology system, they use outdoor temperature as a free source for cooling much more often than traditional free cooling chillers, thus maximising the energy saving achievable.

FERRARI LAND TARRAGONA - SPAIN

Period: 2017 Application: Sport structures Plant type: Hydronic System Cooling capacity: 1321 kW Heating capacity: 1495 kW Air flow: 110200 m³/h Installed machines: 2x FOCS-N/SL-CA; 3x NECS-N/B; 1x NX-N/K; 7x WZ-E

BILL S RESIDENCE MELBOURNE - AUSTRALIA

Period: 2017 - 2018 Application: Residential buildings Plant type: Hydronic System Cooling capacity: 44 kW Installed machines: 1x i-NX/S 0151P

Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a

MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A.

Head Office: Via Caduti di Cefalonia 1 - 36061 Bassano del Grappa (VI) - Italy Tel (+39) 0424 509 500 - Fax (+39) 0424 509 509

www.climaveneta.com www.melcohit.com

